R3Swarms - Robust, Resilient and Reconfigurable Swarms

For robots to become more ubiquitous and interoperable in tomorrow’s world of smart cities and the industrial internet of things (IIoT), novel wireless connectivity solutions, and the means to enable more resilient and flexible swarms deployable across multiple scenarios must be brought forward today. The swarm robotics domain has the potential for bringing decades of theoretical research into practice and impact the real world with novel solutions to swarming autonomous cars, swarming drones in the U-Space large-scale distributed swarms of industrial robots, and masses of service robots swarming our cities.


The R3Swarms project comprehensively addresses some of the key challenges in current technology by developing a framework that integrates (1) secure UWB-based mesh connectivity and collaborative localization; (2) DLT-powered trustable and transparent collaboration and consensus; (3) deep-learning-enhanced predictive situational awareness; and (4) multi-tier autonomy stack with cloud-fog-edge fallback mechanisms. In turn, these four tracks build together towards the design and development of robust, resilient and reconfigurable swarms with efficient fleet management and interfacing. Applications will be provided through a swarm-as-a-service, with abstraction of swarm capabilities and resources as a large- scale system of heterogeneous autonomous entities.

Funded by: Secure Systems Research Center (SSRC), Technology Innovation Institute (TII), Abu Dhabi Government’s Advanced Technology Research Council (ATRC)




Related Publications

[1] Sahar Salimpour, Paola Torrico Morón, Xianjia Yu, Jorge Peña Queralta and Tomi Westerlund, "Exploiting Redundancy for UWB Anomaly Detection in Infrastructure-Free Multi-Robot Relative Localization", arXiv preprint , arXiv:2303.17207 (2023) . (View) (Download) (arXiv)

[2] Jorge Peña Queralta, Farhad Keramat, Salma Salimi, Lei Fu, Xianjia Yu and Tomi Westerlund, "Blockchain and Emerging Distributed Ledger Technologies for Decentralized Multi-Robot Systems", Current Robotics Reports (to appear) , Springer (2023) . (View) (Download)

[3] Xianjia Yu, Paola Torrico Morón, Sahar Salimpour, Jorge Peña Queralta, Tomi Westerlund, "Loosely Coupled Odometry, UWB Ranging, and Cooperative Spatial Detections for Relative Monte-Carlo Multi-Robot Localization", arXiv (2023) . (View) (Download)

[4] Jiaqiang Zhang, Farhad Keramat, Xianjia Yu, Daniel Montero Hernández, Jorge Peña Queralta, Tomi Westerlund, "Distributed Robotic Systems in the Edge-Cloud Continuum with ROS 2: a Review on Novel Architectures and Technology Readiness", Seventh International Conference on Fog and Mobile Edge Computing (FMEC 2022) , IEEE (2022) . (View) (Download) (arXiv)

[5] Sahar Salimpour, Farhad Keramat, Jorge Peña Queralta, Tomi Westerlund, "Decentralized Vision-Based Byzantine Agent Detection in Multi-Robot Systems with IOTA Smart Contracts", International Symposium on Foundations & Practice of Security (FPS – 2022) , Springer (2022) . (View) (Download) (arXiv)

[6] Paola Torrico Morón, Salma Salimi, Jorge Peña Queralta, Tomi Westerlund, "UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems", IEEE International Symposium on ROSE 2022 , IEEE (2022) . (View) (Download) (Google Scholar) (arXiv)

[7] Farhad Keramat, Jorge Peña Queralta, Tomi Westerlund, "Partition-Tolerant and Byzantine-Tolerant Decision-Making for Distributed Robotic Systems with IOTA and ROS 2", IEEE Internet of Things Journal , IEEE (2023) . (to appear). (View) (Download) (arXiv)

[8] Sahar Salimpour, Jorge Peña Queralta, Tomi Westerlund, "Self-Calibrating Anomaly and Change Detection for Autonomous Inspection Robots", IEEE Robotic Computing , IEEE (2022) . (View) (Download) (arXiv)

[9] Salma Salimi, Paola Torrico Morón, Jorge Peña Queralta, Tomi Westerlund, "Secure Heterogeneous Multi-Robot Collaboration and Docking with Hyperledger Fabric Blockchain", IEEE 8th World Forum on Internet of Things , IEEE (2022) . (View) (Download) (arXiv)

[10] Yu Xianjia, Sahar Salimpour, Jorge Peña Queralta, Tomi Westerlund, "Analyzing General-Purpose Deep-Learning Detection and Segmentation Models with Images from a Lidar as a Camera Sensor", Sensors , MDPI (2023) . (View) (Download) Presented at the International Conference on Intelligent Systems Design and Engineering Applications (ISDEA)

[11] Paola Torrico Morón, Jorge Peña Queralta, Tomi Westerlund, "Towards Large-Scale Relative Localization in Multi-Robot Systems with Dynamic UWB Role Allocation", 2022 7th International Conference on Robotics and Automation Engineering , IEEE (2022) . (View) (Download) (arXiv)

[12] Jorge Peña Queralta, Li Qingqing, Eduardo Castelló Ferrer, Tomi Westerlund, "Secure Encoded Instruction Graphs for End-to-End Data Validation in Autonomous Robots", IEEE Internet of Things Journal , IEEE (2022) . (View) (Download) (Researchgate) (Google Scholar) (arXiv)

[13] Jorge Peña Queralta, Li Qingqing, Fabrizio Schiano, Tomi Westerlund, "VIO-UWB-Based Collaborative Localization and Dense Scene Reconstruction within Heterogeneous Multi-Robot Systems", IEEE International Conference on Advanced Robotics and Mechatronics , IEEE (2022) . (View) (Download) (arXiv)