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Abstract—With the constant improvement of electronics and
development by research community, professionals and enthusi-
asts around the world, Internet of Things (IoT) based devices
have seen a massive increase. These devices are now connected
to our daily life in multiple ways and facilitate smooth operation
of large, autonomous and semi-autonomous systems in different
sectors. The communication among these systems needs to be
done in a secure manner. However, as most of the IoT devices
have very limited processing capability and energy source, all
cryptography algorithms are not able to run on all devices. In
addition, depending on the required data performance, it can be
desirable to use one specific type of algorithm over others. In this
paper, we analyze popularly used lightweight algorithms in terms
of operational latency by running them on multiple widely used
embedded modules. In addition, we measure power consumption
while running an algorithm to realize its impact on battery life
as an example. Finally, we discuss design-time considerations to
help designers to select an appropriate cryptography algorithm
for different applications.

Index Terms—Lightweight, Security, Algorithms, Internet of
Things, IoT, Sensor, Nodes, Latency, Efficiency, AES, ChaCha,
CTR, SHA, SHA3, BLAKE, SHAKE.

I. INTRODUCTION

The Internet of Things (IoT) has essentially extended the
use of Internet among smart, embedded and wide variety of
cyber-physical systems. These are so widely used for data
collection, monitoring and controlling purpose in numerous
application fields that they are deeply integrated in our daily
life [[1]. Such devices communicate with local network or the
Internet and also with each other. Since these often collect
information which is sensitive and in some cases private, the
transfer process of data must be secure [2]]. In IoT applications,
security is always one of the most important requirements
because an unsecured IoT can cause serious consequences
including but not limited to personal injury and damage of
property due to unauthorized access [3|]. Most importantly,
sensitive data can fall into wrong hands resulting in breach of
privacy [4]. For example, researchers demonstrated that some
certain insulin pumps can be hacked by unauthorized third
party to gain control with a bad intention [5]]. In order to avoid
such security related problems, end-to-end security must be
implemented in IoT applications. In particular, architectural
layers such as sensor layer, gateway layer, Cloud layer and
application layer within the IoT-based system must incorporate
security measures to protect data and secure the system [6]. For
this purpose, cryptography algorithms are used to authenticate

permitted users to provide access and encrypt data while
transfer takes place.

The embedded devices and electronics involved in IoT are
resource-constrained devices which are mostly limited in terms
of processing capability, physical memory and power supply.
Particularly, the sensor nodes at the lowest architectural level
of the system cannot run the original variants of cryptography
algorithms because those require heavy resources for complex
computations [7]]. Furthermore, the sensor nodes are often
required to run for prolonged period of time to make it
useful in particular applications such as health monitoring
[8]. Considering these, it is not possible to run the origi-
nal, processing-heavy algorithms on embedded devices and
hence lightweight versions of cryptography algorithms were
developed. These are optimized for the low-resource embed-
ded systems to comply with the processing capability and
latency requirements while fulfilling the security requirements.
However, not all of them are equally suitable for the sensor
layer [9]. Specifically, from one application to another, the
suitability of a particular algorithm varies due to operational
performance, complexity, processing and latency requirements
and level of security it provides. In this paper, a systematic
approach is taken to run widely used cryptography algorithms
on preset data to measure operational latency. Additionally,
we discuss the appropriateness of algorithms when system
resources are limited and suggest considerations for optimal
performance, energy-efficiency and application requirements.
The specific contribution of this work is as follows:

o Evaluate run-time performance of widely used cryptog-
raphy algorithms

o Discuss appropriateness of stated algorithms for different
applications

o Provide guidelines and mention aspects to consider for
optimized performance and energy efficiency

The rest of the document is arranged as follows: Section II
gives an overview of our experimental methodology, Section
III enumerates different lightweight cryptography algorithms
used in IoT-based devices or sensor nodes and illustrates the
test results, and Section IV discusses limitations and suggests
possible improvisation methods. Finally, Section V concludes
this paper and provides directions for future work.



II. METHODOLOGY

Many cryptography algorithms have been proposed for
providing security, authenticating or encrypting payload data
in a communication. However, not all of the algorithms can
be applied in resource-constrained devices (e.g. sensor nodes
in IoT systems). When employing cryptography algorithms, it
is of utmost importance to know what a hardware platform
offers and how well a specific algorithm runs on it. To test
the performance and associated advantages and disadvantages
of the lightweight cryptography algorithms, we have selected
four widely used embedded devices which have been used
as controllers for sensor nodes in many applications. These
are Arduino Pro-Mini (Pro-mini), Arduino Uno (Uno), ESP-
WROOM-32 (ESP32) and ESP8266MOD (ESP8266).

The first two are based on the Microchip ATmega328P
[10] micro-controller unit (MCU) conforming to Harvard
architecture. The modules support 8-bit operation and run at
8 MHz and 16 MHz clock frequency, and are supplied 3.3 V
and 5 'V, respectively. The ESP32 and the ESP8266 are 32-
bit processing capable and are based on the Xtensa dual-core
LX6 microprocessor [[11]], and the L106 RISC microprocessor
core constructed upon the Tensilica Xtensa Diamond Stan-
dard 106Micro [|12f], respectively. Although the LX6 has two
processing cores, a single core of ESP32 is utilized in our
experiments because most of the lightweight cryptography
algorithms are designed for a single core. The processor clock
frequency, bus width, RAM and flash memory specifications
for the aforementioned modules are listed in Tablell

In the latency tests, an array of 16 bytes was used as
the plain-text input. The algorithms are compiled in Arduino
development environment based on the Crypto library [13]]. In
addition, for measuring the latency period, Arduino micros()
function [[14] is used which depends on the hardware timer.
The measurement accuracy relies on the resolution of the
underlying hardware timer in the MCU. For example, on an
Arduino Uno running at 16 MHz, the resolution is 4 us. To get
a more accurate latency measurement, each algorithm was run
500 times and the average latency values are presented here. In
addition, we have conducted energy measurements for certain
algorithms to provide insight on how those relate to variation
in latency. During the tests, we have used a professional power
monitor from Monsoon Inc. [[15] which allows fine grained and
accurate measurement of average current and power along with
battery life estimation.

III. EXPERIMENTAL RESULTS

This section briefly enumerates AES, CTR, ChaCha,
ChaChaPoly, SHA and BLAKE?2 algorithms and shows their
run-time performance on our test modules. Also, the results,
respective impacts and their causes are discussed, and possible
considerations when using these are suggested.

A. Advanced Encryption Standard

Advanced Encryption Standard (AES) is one of the most
widely used algorithms in embedded systems for encrypting

TABLE I
SPECIFICATION OF THE EMBEDDED DEVICES USED IN THE EXPERIMENTS

Module Bus Width Clock RAM  Flash
/ MCU (bit) (MHz) (KB) (KB)
Arduino Pro-Mini 8 8 2 32
(Atmel ATmega328P)

Arduino Uno 8 16 2 32
(Atmel ATmega328P)

ESP32 (ESP-WROOM-32) 32 240 520 4096
(Xtensa LX6 dual-core)

ESP8266 (ESP8266MOD) 32 80 80 4096

(Xtensa Diamond 106Micro)

blocks of data during transfer [[16]. Among other AES variants,
we have used the Electronic Codebook (ECB) in our experi-
ment due to their linearity and reduced complexity. The AES
operation happens in two stages; (1) the key setup and (2) the
encryption/decryption. The key setup time for 128-bit, 192-bit
and 256-bit keys on our test modules is given in Table{ll} In
addition, the time required for a single byte in the second stage
of the AES algorithm, encryption/decryption is listed. It can
be observed that the ATmega328P running at 8 MHz takes the
maximum time and ESP32 takes the shortest time as expected.
Although the ESP8266 runs at only 3 times slower clock than
the ESP32, the latter takes significantly shorter time due to its
dedicated cryptography hardware accelerator.

We can see close encrypt/decrypt timings among AES
variants when run on the same module. In the setup phase,
32-bit modules dramatically outperform the 8-bit counterparts
due to ample amount of available RAM. However, the differ-
ence between the 32-bit modules is noticeably smaller during
encryption/decryption since it only involves static-length data
during different rounds.

TABLE I
KEY SETUP, ENCRYPTION AND DECRYPTION PERIOD OF AES
ALGORITHM IN us

Operation Algorithm Pro-mini Uno ESP32 ESP8266
Set Key AES-128-ECB 317,14 158,57 0,52 35,03
AES-192-ECB 330,47 165,24 0,54 33,69
AES-256-ECB 411,91 211,45 0,57 44,36
Encrypt AES-128-ECB 66,61 33,31 0,38 6,41
AES-192-ECB 79,96 39,98 0,39 7,69
AES-256-ECB 93,3 46,65 0,41 8,98
Decrypt AES-128-ECB 1443 72,15 0,38 9,16
AES-192-ECB 174,89 87,44 0,39 11,05
AES-256-ECB 205,48 102,74 041 12,94
B. CTR

Block ciphers ensure that when the amount of data is large,
the produced cipher-text after encryption is different in each
round of operation even if the original data or plain-text is
the same. CTR is an operational mode of block ciphers in
which a block cipher is essentially converted into a stream
cipher using key-stream generated from successive values of
a single or multi-step counter [17]. However, it is weak against
manipulation attack and data cannot be recovered fully from



a corrupted stream of data due to chaining, i.e., dependency
on previous data during key generation. Figure{I] shows the
time CTR mode takes to complete. It can be noticed that the
ESP32 performs significantly faster due to its dedicated AES
block in the CPU core.
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Fig. 1. Run-time performance of CTR algorithm.
C. ChaCha

In IoT systems when real-time data is transferred as a stream
or as serial bytes of data, the overhead of the block ciphers can
be problematic for ensuring smooth, flexible user experience.
Consequently, the stream ciphers were developed to help
reduce the total encryption and decryption latency. ChaCha
is one of the most widely used stream ciphers due to its lower
operational latency. Use of ChaCha20 [18|] was proposed by
Google as it provides better security to avoid cache-collision
attacks and yields almost three times faster operation. ChaCha
incorporates key stream which goes through X-OR operation
with the plain-text data and is not vulnerable to timing based
attacks. The numbers 8, 12 and 20 indicate the rounds of
encryption operations run on a single data unit.

Table{IT] shows that ChaCha is approximately four times
faster than similar AES variants in terms of key setup. In-
terestingly, ChaCha 256-bit variants runs faster on the 32-bit
modules than the respective 128-bit ones due to fewer oper-
ations during the quarter round. Besides, there is very little
variation in key setup times among the 128-bit and 256-bit
variants of ChaCha8, ChaChal2 and ChaCha20. TableIII] also
lists the latency of encryption/decryption when running on our
test modules. Although the timings are comparatively lower
than the AES, the 32-bit modules perform the best. However,
between two 32-bit modules, the performance difference is not
on par with the 4 times faster ESP32 module.

D. ChaChaPoly

Modern IoT-based sensor nodes frequently send data to and
receive control commands from a host directly or through
another node. Consequently, large amounts of data packets
are transmitted among nodes, especially when the number of
nodes increases and data rate is high. It is critical to ensure the
authenticity of such information packets and hence Authen-
ticated Encryption with Associated Data (AEAD) algorithm
ChaChaPoly was developed. It is widely used in transferring
data to the Internet and is based on ChaCha20 and Poly1305

TABLE III
KEY SETUP, ENCRYPTION AND DECRYPTION PERIOD OF CHACHA
ALGORITHM IN us

Operation Algorithm Pro-mini Uno ESP32  ESP8266
SetKey ChaCha8 128 86,51 43,08 1,26 8,7
ChaCha8 256 84,64 42,13 1,09 4,16
ChaChal2 128 86,51 43,09 1,26 8,7
ChaChal2 256 84,62 42,13 1,09 4,16
ChaCha20 128 86,38 43,08 1,26 8,71
ChaCha20 256 84,63 42,13 1,09 4,16
Encrypt ChaCha8 128 18,48 9,24 0,17 0,41
ChaCha8 256 18,48 9,24 0,17 0,41
ChaChal2 128 24 12 0,19 0,48
ChaChal2 256 24 12 0,19 0,48
ChaCha20 128 35,03 17,52 0,24 0,62
ChaCha20 256 35,03 17,52 0,24 0,62
Decrypt ChaCha8 128 18,49 9,25 0,17 0,42
ChaCha8 256 18,49 9,25 0,17 0,42
ChaChal2 128 24,01 12,01 0,19 0,48
ChaChal2 256 24,01 12,01 0,19 0,48
ChaCha20 128 35,05 17,52 0,24 0,62
ChaCha20 256 35,05 17,52 0,24 0,62

Message Authentication Code (MAC) algorithms [|18]]. Figure-
] shows the run-time duration of ChaChaPoly. It can be
clearly seen that the 32-bit modules drastically outperform the
resource-limited 8-bit ones. Unlike AES which uses look-up
tables to compute mixcolumn operations, ChaCha uses built-
in CPU instructions for encryption. This helps to achieve
dramatically higher performance while being CPU-friendly
and platform independent in general.
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Fig. 2. Run-time performance of ChaChaPoly algorithm.

E. SHA

A cryptography hash function converts an arbitrary sized
data into a predefined data set of fixed length. This is useful if
there is a restricted or fixed-width payload capacity when data
is transferred from one sensor node to another. Secure Hash
Algorithm (SHA) is designed to perform this while hiding the
actual data. A very small change in the original data can yield
a dramatic change in the output [19]. In embedded systems,
SHA algorithms are used to securely transfer and validate
the integrity of data. SHA256 and SHAS512 are computed
using 32 and 64 bytes, and involve 64 and 80 rounds of
operation on the data, respectively. Figure{3]and Figure-f4] show
the run-time latency of SHA256 and SHAS512 algorithms,
respectively. As the hash functions are originally targeted at
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Fig. 3. Run-time performance of SHA256 algorithm
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Fig. 4. Run-time performance of SHA-512 algorithm.

32-bit and 64-bit architectures, on 8-bit MCUs, these run
at a drastically slower speed due to limited resources and
division of operation yielding more cycles. In contrast, the 32-
bit modules handle both hashing and finalizing operations well.
However, the SHAS512 takes longer time due to double hash
size and extra rounds of operation than SHA256. Figure{3| also
shows time taken for reset and finalizing operation by SHA256
variant of Hash-based Message Authentication Code (HMAC).
HMAC depends on the underlying hash function to make an
authentication token without actually encrypting the original
message token. The receiver can verify the data integrity from
hashing it and then matching with the additionally provided
HMAC token by the sender. Interestingly, HMAC scales well
with the clock frequency on both 8-bit and 32-bit modules in
our test.

Although SHA-2 provides stronger encryption, however, it
is vulnerable to length extension attack as it directly uses
the hash generated from the last round to generate next hash
token. For this reason, SHA-3 algorithm was developed
which uses modified hash for the consequent key generation
and provides better performance on 32-bit and 64-bit proces-
sor architectures. Figure{5| shows the run-time performance
of SHA3-256 and SHA3-512 algorithm. The time taken by
SHA3-256 hashing process is approximately half of SHA3-
512 due to key length. However, there is very little time
variation during data finalizing rounds on the same module,
respectively. The 8-bit modules suffer since data is read and
written in chunks from the flash to the RAM, and vice-versa.
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Fig. 5. Run-time performance of SHA3-256 and SHA3-512 algorithm.

F. BLAKE2

As cryptography functions involve many mathematical cal-
culations, optimization of existing algorithms is desirable for
improved performance and security. Cryptography hashing
function BLAKE was developed ground-up from ChaCha by
J-P. Aumasson et al. to outperform SHA algorithms. Later, an
improved version called BLAKE2 eliminated the security
risks of the earlier compromised MD5 and SHA-1. On a 64-
bit computing system BLAKE2b shows improved performance
compared to SHA2 and SHA3 algorithms.
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Fig. 6. Run-time performance of BLAKE2b algorithm.
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Fig. 7. Run-time performance of BLAKE2s algorithm.

In contrast, BLAKE2s is optimized for 8-bit and 32-bit
processor platforms making it more suitable for embedded
systems. Figure{6| and Figure{7] respectively show the run-
time performance of BLAKE2b and BLAKE2s variants of



BLAKE2 on our test modules. From the figures, it can be
seen that the BLAKE2s hashing, reset and finalizing process
run significantly faster compared do BLAKE2b due to op-
timization by design. The ESP8266 and ESP32 modules are
quicker due to higher clock and wider data width. Additionally,
BLAKE2s support HMAC and ESP32 should be used if an
application employs stricter latency budget.

G. SHAKE

Cryptography hashing functions work in a one-way manner
and turn an arbitrary length of data to a fixed length content.
While a specific algorithm uses a fixed, pre-defined length of
data as input to next stage, the content length can vary among
algorithms. Extendable-Output Functions (XOF) [20] are used
to convert an arbitrary length of content to a dynamically
sized digest output. This facilitates use of same data in
multiple algorithms just by changing the output length of
the hashing process and helps optimize the encryption or
decryption process. Figure{8] shows run-time performance of
two XOF- SHAKE128 and SHAKE256 algorithms. It can be
observed that both run fast even on the slowest 8-bit module
at 8 MHz, and would not add burden to the MCU.
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IV. DISCUSSION

Depending on the algorithm’s usage of memory due to
parameters such as number of processing rounds and key size,
the run-time latency can vary dramatically. If the available
RAM is low due to hardware design itself and memory used
by other processes, cryptography algorithms can take long time
to complete due to the slower operation of flash memory used
instead to compensate the shortage of RAM. For example, the
initial key setup time is high for AES, ChaCha and finalizing
process in SHA algorithms running on the ATmega328P’s
limited 2 KB RAM [10]. Therefore, to achieve optimum
performance, it is highly recommended to consider having a
MCU with sufficient RAM based on the algorithm and number
of other tasks or processes which will occupy the RAM.

Many applications require sensor nodes to send varying
amount of data to the host or to another node. One algorithm
can be more efficient over another for a particular range of
packet sizes for a message. Depending on the application and
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Fig. 9. Performance of AES and ChaCha with varying data packet size.

mode of power to the sensor node, it is important to consider
how latency and size of data packets relate with each other.
This can help to optimize total run-time of a node and to select
an optimal algorithm. Figure{9] shows how AES-256-ECB and
ChaCha20-256 compares in terms of time taken for encrypting
data packet when number of bytes varies. During encryption,
AES takes 16 byte blocks and ChaCha takes 64 bytes of plain
text at a time. In addition, it is assumed that for each packet
the encryption key is renewed. Each time the key is changed
or renewed, it adds latency overhead to the total time taken
for encryption process. It can be observed from Figure{J] that
as packet size increases, time taken by AES increases at a
much higher rate than ChaCha. Also, as the Pro-mini has
limited RAM, the difference between AES and ChaCha is
more visible when compared with ESP32. This implies that
AES is better suited for infrequent and small amount of data,
while ChaCha is more appropriate for streaming data when
data packet size is sufficiently small. However, while frequent
change or renewal of the key for each data packet provides
superior security against brute-force attacks, if the application
requirements allow, the key can also be renewed at a larger
interval which can lower the total encryption latency.

On the other hand, time taken to encrypt or decrypt a single
byte and initial key setup time can vary on 8-bit and 32-
bit wide MCUs. For example, when the AES128, AES192,
AES256 algorithm is run on the 8-bit ATmega328P and 32-bit
106Micro processor, variations are observed. Since the former
one is run at 8 MHz (in Pro-mini) and the latter one at 80 MHz,
to have fair performance comparison, the architecture width
and clock frequency is taken into account. For this reason, the
latency of the ATmega328P is compared to 10 times slower
and 4 times less architecture width of the /06Micro processor
which is shown in Figure{I0} The graph shows that clock for
clock, the 8-bit MCU takes less time to run the algorithm.
According to Atmel, particular low-power systems can benefit
from optimization of algorithms, dedicated hardware features
and using an 8-bit MCU instead of a 32-bit variant [22].

Since cryptography algorithms involve complex and repeti-
tive mathematical operations, it requires significant computa-
tion. Depending on the selected embedded module, the supply
requirements can vary due to difference in run-time duration
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while processing data. As an example, we have measured
the energy requirement of the test devices used in this paper
when stream cipher ChaCha is run. Table{[V]enlists the supply
voltage, average power consumption, average current draw
and respective battery life. Since the modules are tested as-
is and contain extra components on-board such as USB-TTL
converter IC, it increases the values slightly. However, these
give an overview of supply requirements when the algorithm is
run. Designers must consider these parameters if a sensor node
is run on battery power and is desired to work continuously
for long time.

TABLE IV
POWER REQUIREMENTS OF TEST DEVICES WHEN CHACHA IS RUN

Module / Parameter ~ Pro-mini Uno ESP32  ESP8266
Supply Voltage (V) 33 5.0 33 33
Avg. Current (mA) 2.72 6.02 53.89 79.31
Avg. Power (mW) 12.23 30.94 177.2 260.7
Battery Life (hours) 367.6 166.1 18.6 12.6

(1000 mAh capacity)

In recent years, the number of connected sensor nodes have
been increasing in different application fields where real-time
data is collected and then sent as a serial stream to the next
level of the hierarchy such as a nearby gateway or another
node connected to the Internet [23]] [24]. Several factors need
to be considered when designing a sensor node which re-
quires security measures. In general, clock frequency, available
memory (RAM), encryption latency, transmission bandwidth,
confidentiality level of data, use of in-RAM data buffer, and
utilization of independent hardware buffer for transmission
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cryptography algorithms and involving data transmission.

play important roles and are related to each other. Figure{IT]
illustrates few time-wise operational scenarios (A, B, C and
D) for a sensor node. In A and B, the per-byte encryption time
is very close to the transmission period which is desired when
choosing an encryption algorithm. The encryption key is setup
at the beginning, then the data is encrypted and the CPU is
idle while the transmission completes. This idle time can be
utilized for other operations, or if there is none, the CPU can
be put into sleep mode to save energy. After a certain interval,
if required, the encryption key is updated and then the process
repeats. This is optimal for low data rates and infrequent
data transfer when the MCU resources are extremely limited.
In B, the process is essentially similar except that the CPU
can start encrypting the next byte after handing over the
previous byte to the hardware serial buffer. This way the
CPU is not idle and more data can be processed and sent
in an interleaved manner. This is suitable for medium data



rates. However, when considering other parameters such as
energy efficiency, transmission bandwidth and sampling rate of
data, often the transmission period and the selected encryption
method’s latency is not the same. Embedded system designers
must consider all parameters to achieve the best combination
such that maximum data is processed upon minimum energy
consumption. In C, the per-byte transmission period is longer
than the per-byte encryption latency, while in D, it is the
opposite. The CPU is idle (in C) after processing the next
byte while the previous byte is being sent. In such cases, a
hardware buffer, or if the system resources allow, a secure
software buffer should be used. Consequently in D, when there
is plenty of memory to temporarily store the encrypted data,
a much higher baud-rate can be used so that more data can
be sent in a single turn. This promotes energy efficiency due
to much lower bit-transitional period. Finally, a proper choice
of serial interface is also vital to achieve maximum energy-
efficiency [25]).

V. CONCLUSION

Cryptography algorithms ensure security of data and vali-
date appropriate and intended access through authentication,
encryption and decryption. They are widely used in sensor
nodes while the collected data is transferred to the intended
destination. However, the limited resources of the nodes’
underlying embedded electronics require pertinent selection
of security algorithms. Keeping this in mind, light-weight
cryptography algorithms have been developed specifically
targeting the low-power and resource-constrained embedded
systems. However, the operational performance and processing
requirements can render one algorithm most suited for a
particular application while making it unusable for another.
Furthermore, the computational requirements are inversely
related to the total run-time of sensor nodes operating from
limited battery power. Therefore, it is important to consider an
appropriate algorithm for a target platform. In this paper, we
have experimented with widely used cryptography algorithms
on popular embedded modules revealing their operational
latency on 8-bit and 32-bit platforms. We have analyzed the
algorithms’ suitability for specific scenarios to help system
designers make better decisions when choosing a cryptography
algorithm. Furthermore, to give an overview of probable
battery life, we have also run a test to estimate the energy
consumption of the modules while a specific algorithm is run.
In future, we plan to investigate more hardware platforms,
target specific applications, analyze performance and discuss
optimization techniques when two or more lightweight cryp-
tography algorithms are used in combination.
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