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Abstract—The role of deep learning (DL) in robotics has
significantly deepened over the last decade. Intelligent robotic
systems today are highly connected systems that rely on DL
for a variety of perception, control and other tasks. At the
same time, autonomous robots are being increasingly deployed as
part of fleets, with collaboration among robots becoming a more
relevant factor. From the perspective of collaborative learning,
federated learning (FL) enables continuous training of models
in a distributed, privacy-preserving way. This paper focuses on
vision-based obstacle avoidance for mobile robot navigation. On
this basis, we explore the potential of FL for distributed systems
of mobile robots enabling continuous learning via the engagement
of robots in both simulated and real-world scenarios. We extend
previous works by studying the performance of different image
classifiers for FL, compared to centralized, cloud-based learning
with a priori aggregated data. We also introduce an approach
to continuous learning from mobile robots with extended sensor
suites able to provide automatically labelled data while they are
completing other tasks. We show that higher accuracies can be
achieved by training the models in both simulation and reality,
enabling continuous updates to deployed models.

Index Terms—Sim-to-real; Federated learning; Visual obstacle
avoidance; Robot navigation; Continuous learning;

I. INTRODUCTION

Vision-based obstacle avoidance is an important enabler for
widespread autonomous robot navigation and could also help
visually handicapped citizens [1]. In general, vision sensors
have been having an increasing role in intelligent robotic
systems, as advances in deep learning (DL) have led to
new state-of-the-art solutions mobile navigation, human-like
walking, teaching through demonstration, and collaborative
automation, among others in areas such as advanced percep-
tion and intelligent control [2], [3], [4].

In this paper, we extend the previous work [5] on feder-
ated learning for vision-based obstacle avoidance in mobile
robots towards analyzing different architectures and, most
importantly, introducing an strategy for continuous learning
from both simulated and real robots carrying out different
missions requiring autonomous navigation. There are a number
of works in the literature showing the potential of DL for
vision-based obstacle avoidance [6], and works integrating
other techniques such multi-view structure-from-motion for
enhanced performance [7]. However, in addition to the use

of DL in [5], the methods are also validated in the real world,
a federated learning (FL) framework is introduced, and the
effects of learning through heterogeneous environments are
analyzed.

Federated learning enables sharing knowledge without
transferring raw data. Therefore, FL allows for privacy-
preserving distributed learning, which can then be enhanced
by other technologies, such as distributed ledger technolo-
gies [8], has been utilized in multiple domains in robotics
and autonomous system [9]. To the best of our knowledge,
this is the first work to introduce an strategy for continuous
learning together with federated learning and validating it in
the real world. In addition to real-world robots, we also utilize
simulations to obtain enough data for training the DL models.
Due to the proliferation of photorealistic simulators in robotics
fields, studies are increasingly relying on these simulators to
supplement data collection in situations where we cannot reach
or collect sufficient data. In addition, through these types of
simulators, the deployment of robotic and autonomous systems
can be more accessible. In this way, we believe it may be
beneficial for real-world vision-based obstacle avoidance in
the real world. Throughout their lives, humans and animals
can acquire, fine-tune, and transfer knowledge and skills. It
is instrumental and interesting for robots to have the same
type of learning capabilities. To continually learn the model
for obstacle avoidance like humans, we involved multiple
robots performing other tasks in different places, including the
simulator, into the FL-based lifelong learning system for data
collection, model training, and model sharing. We compare
the performance of both AlexNet and ResNet18 with cen-
tralized and federated learning approaches to model training.
We evaluate the model on different synthetic and real-world
datasets, and train the models on combinations of different
subsets to better study the effect of environment heterogeneity
during the training phase. New data is also acquired with a
Clearpath Husky mobile robot while it is operating other tasks
and autonomously navigating a new indoors environment.
The new data is automatically labelled with additional sensor
suited. This opens the door to wider usage of heterogeneous
robot fleets where robots with additional sensor capabilities
can generate labelled data to train models able to reproduce
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their autonomous behaviour with more limited sensors, mainly
cameras.

Aided by AI, especially DL, each robot can have a model
representing the environment based on their situated aware-
ness. Different robots may have the limitation of detecting
the environment due to their limited resources. It is of great
necessity to have a collective model to share their knowledge
about the environment. Instead of an individual robot, in
a multi-robot system, multiple robots, situated in various
whereabouts, collaboratively performing particular tasks is
more efficient and of high success rate in heterogeneous envi-
ronments including unknown ones [10]. However, because of
the limits of scenarios where vision-based obstacle avoidance
is applied, it is still challenging for DL to collect enough
visual inputs for collaborative learning and share them with
other agents for privacy and security reasons. To address these
concerns, we proposed an approach that included FL, Sim-to-
Real (Sim2Real) via a photorealistic simulator, and Lifelong
Learning.

In summary, we investigated the possibility of federated
and continuous learning within hybrid teams of simulated
and real robotic agents in this work. We then evaluate the
performance benefits of such an approach over offline learning
or learning from more limited data sources. First, we evaluate
two different deep obstacle avoidance neural networks with
both synthetic and real-world data. For both of the archi-
tectures a FL-based knowledge sharing method (where the
locally trained models are fused) is compared to a centralized
training approach (where raw data needs to be aggregated
before the training starts). Both models are validated with data
from the photorealistic simulator and real-world environment
separately. Second, we analyzed the sim-to-real performance
of two different deep obstacle avoidance models generated by
FL methods, with our results showing that FL outperforms
the centralized data aggregation methods. Third, we integrate
lidar-based navigation for automated labelled data gathering.
We implemented an online FL-based visual obstacle avoidance
system both in a simulator and real-world environment. With
such a system, we can continuously collect data from obstacles
and free paths and train the model while the robots operate
other tasks.

The rest of this paper is organized as follows. In Section II
we review related works in FL for autonomous robots, sim-
to-real transfer and lifelong robot learning. The methodology
followed for obtaining the results reported in the manuscript
is then introduced in Section III, with Section IV delving into
the actual experimental results. Finally, section V concludes
the paper and outlines future work directions.

II. RELATED WORK

Multi-robot collaboration and DL for robotics have both
played an increasingly important role in multiple robotic appli-
cations [4]. However, most of the work to date in learning from
real-world experiences, sim-to-real transfer, and continuous
learning, has been dedicated to reinforcement learning [3],
[11] and robotic manipulation [12]. Within the possibilities to

achieve collaborative learning, one of the most straightforward
approaches is cloud-based centralized learning [13], with a
server where data is aggregated and training occurs at once
or in batches, but in an offline manner. Federated learning, in
contrast, offers a distributed solution to collaborative learning
where, in turn, the process is privacy-preserving (raw data
can be processed locally). It also allows for management of
networking resources (choosing when and how to transfer the
models) through distributed computation at the edge [14].

In the area of lifelong learning and continuous learning
for robotics, the literature has been in general dedicated to
simulation environments only. While AI advances the intel-
ligence of robots in various subfields of robotics, numerous
challenges remain with real-world application, particularly in
an unknown environment. Among these limitations are a lack
of open-ended learning about item categories and scenes, the
absence of a global navigation map, and the occurrence of
object collisions, particularly in dynamic environments. With
the assistance of Lifelong learning, the robot should be able
to learn new object categories continuously and comprehend
affordances, especially for robots manipulating tasks from
a small number of on-site training examples [15]. Lifelong
learning for navigation is a good application of lifelong
learning. Compared with the traditional planner in navigation,
this learning approach can improve the navigation performance
based on its own experience and retain the ability after learning
new ones [16].

In terms of deep learning vision-based obstacle avoidance,
this has been a researched topic partly owing to the higher
degree of maturity of DL methods for vision data in com-
parison to other modalities such as lidar data [17], [18].
Cameras are also more widely available and are relatively
inexpensive sensors, while the methods can be generalized
to various environments owing to the lack of the need
for specific geometric or topological features. For example,
in [19], autonomous aerial robots are deployed with minimal
knowledge of the environment and obstacle avoidance is
achieved through a single monocular camera. With models
trained through deep reinforcement learning (DRL), noise to
data in the training phase can bring increased resilience to
changes in the environments [20], a method that is typical in
other DRL approaches [3], [21]. In this paper, we also exploit
heterogeneity of environments to show how a wider variety of
the training data brings performance improvements to the DL
models, especially when they are trained with a FL approach.

In the domain of sim-to-real to transfer for DL policies
driving autonomous behaviour in robotic system, the most
widely studied learning algorithms are DRL approaches [3].
Sim-to-real transfer with DRL has been particularly studied
in depth in problems involving dexterous manipulation [21].
Even in this area, recent works in the literature also show
the potential of DRL for vision-based obstacle avoidance [22],
[23]. The authors of these works demonstrate the effectiveness
of the methods even when the robots encounter in the real
world new environments and objects.



III. METHODOLOGY

This section outlines the robot platform utilized in this
experiment, two different deep neural networks to do vision-
based obstacle avoidance for further validation of FL perfor-
mance, and navigation settings for continual learning.

A. Data collection for FL

The details of the data gathering, including the usage of the
photorealistic simulator Nvidia Isaac Sim, the environment set-
tings, and data distributions, are detailed in [5], from where we
reuse the base simulation and training datasets. The datasets
from [5] include data from three distinct scenarios in NVIDIA
Isaac Sim and from Jetbot robots deployed in three real-
world rooms to train and validate the vision-based obstacle
avoidance models. In this work, the datasets from the simulator
are represented as Si, i∈{0,1,2}where i indicates the simulated
environments, including a hospital, office, and warehouse.The
three real-world datasets are denoted as Ri, i∈{0,1,2} where i
indicates office spaces, hallways, and laboratory environments,
respectively. Additional datasets acquired specifically for this
work are introduced in the relevant sections, with Husky
training data referred to as HS or HR for the simulated and
real robots, respectively.

Regarding data training hardware, in this work, we utilized
a Lambda Vector workstation equipped with two RTX 3080
GPU cards and a 24-core AMD Threadripper 3960X processor
to train our models for vision-based obstacle avoidance.

B. Vision-based obstacle avoidance models

We trained two distinct types of DL models to ensure
FL’s performance in visual obstacle avoidance and assess
how performance differs. These two deep convolutional neural
networks (CNN) are vision-based obstacle classifiers for two
classes that define whether the environment ahead is blocked
or free for the robot to navigate. Owing to the relatively low
level of complexity of the classification task and the size
of potential datasets for such tasks, we have selected the
AlexNet [24] and ResNet18 [25] architectures as appropriate
for such binary classification task. AlexNet and ResNet are
both commonly exploited backbones for conducting various
tasks across multiple domains.

These two models are generic deep learning models de-
signed to aid robots in discerning between various types of
barriers in heterogeneous situations. This strategy contrasts
with other possibilities, such as object detection or semantic
segmentation (e.g., segmenting free floor from objects and
walls). The chosen approach enables us to concentrate on ex-
amining the performance of a federated learning approach and
its capacity for sim-to-real transfer rather than on developing
a specific obstacle avoidance strategy, which is the study’s
primary purpose.

C. Proposed FL Based Lifelong Learning Obstacle Avoidance

By incorporating lidar into the Husky navigation system, we
developed a straightforward FL-based lifelong learning system
for visual obstacle avoidance. We used lidar to differentiate

Ouster OS0-128 Lidar

RealSense L515

ClearPath Husky
Nvidia Jetson AGX Xavier

(Inside Husky)

Fig. 1: The customized Clearpath Husky platform.

between blocked and free space of visual data while perform-
ing specified navigation tasks. After collecting sufficient data,
the robots will train the models independently and send them
to the server for aggregation into a global model. The model
can then be deployed to another type of robot for obstacle
avoidance performance evaluation.

Regarding the experimental environments, We implemented
this with a Clearpath Husky Fig. 1 robot both in a simulator
and real-world environments. Our customized Husky robot
platform is equipped with one Ouster OS0-128 lidar for
measuring distances to objects when performing autonomous
navigation tasks. When the distances are lower to a certain
threshold, an Intel Realsense L515 camera will be triggered to
categorize the images as obstacles included or free space con-
tinuously. Once a sufficient number of images are collected,
we will train local models based on these data, fuse them to
be a global model by FL methods, and then apply the global
model to a real-world robot obstacle avoidance operation.

It’s worth emphasizing that we used simulated data to
help the continuous learning process, as obtaining real-world
data is not always straightforward. In the following section,
we evaluate the FL fused model’s real-world deployment
performance using either simulated or real-world data.

IV. EXPERIMENTAL RESULTS

This section presents experimental results obtained using
data from both simulated and real robots. We first demonstrate
the performance of various knowledge-sharing approaches
for obstacle avoidance using AlexNet and ResNet18 models
before delving into the possibility of sim-to-real knowledge
transferability. Finally, we demonstrated the FL method’s abil-
ity to facilitate lifelong learning by having Husky performing
simulation and real-world navigation tasks.

A. Centralized training vs. federated learning

Our experiments begin by analyzing the performance im-
provements of federated learning over traditional centralized
training with data aggregation. Both simulated and real-world
data are evaluated separately in this part. Extending the
previous works in [5], by including the AlextNet and ResNet18
in this study, we can compare how the performance will vary
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Fig. 2: Accuracy of models obtained through centralized learning with aggregated data or federated learning with fused local models based on
ResNet18. These results are trained (t) and validated (v) with respective simulation datasets (St

i , Sv
i ) and real datasets (Rt

i , Rv
i ) independently.
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Fig. 3: Accuracy of the different models obtained through centralized learning with aggregated data or federated learning with fused local
models based on AlexNet. These results are trained (t) and validated (v) with respective simulation datasets (St

i , Sv
i ) and real datasets (Rt

i ,
Rv

i ) independently.

for centralized training and FL using different DL models.
To accomplish this, we used the data we collected in the
simulated hospital (St

0), office (St
1), and warehouse (St

2) to
train our model on each dataset and all possible combinations
(St

0,1, St
0,2, St

1,2, St
0,1,2) of two or three of these datasets

and validate the models on Sv
i, i∈{0,1,2}. Equivalently for the

federated learning approach, we run different training rounds
in which we simulate that a different subset of robots is
collaboratively learning without sharing any actual raw data.
Only the models are fused in this approach, and a global
model is updated iteratively. In the case of real-world data,
we repeat the procedure above with Rt

0, Rt
1. Rt

2 representing
the training datasets from rooms, office and laboratory and
Rt

0,1, Rt
0,2, Rt

1,2, Rt
0,1,2 representing the combinations of two

or three of the previous sets while Rv
i, i∈{0,1,2} denotes the

corresponding validation data. Figure 3 and Fig. 2 report the
accuracy of the different models (AlexNet and ResNet18) for
centralized learning and FL, respectively. From the results,
we found that FL based approach is robust both in a sim and
real separately, and its accuracy is competitive with traditional
centralized data aggregation training methods for performing
vision-based obstacle avoidance tasks.

Along with accuracy, we also calculate the area under the

ROC curve (AUC) for each of the scenarios where training
is conducted through either the centralized or federated ap-
proaches. The results are summarized in Table I where the
AUC values for AlexNet-based and ResNet18-based models
are enclosed with a bracket in order. This metric enables a
better understanding of the models’ reliability. In the context of
robotic navigation, there is indeed a cost differential between
false negatives over false positives in terms of the robots’
integrity. However, from the point of view of performance,
false positives can significantly degrade the navigation speed
and time, while low-frequency collisions can be avoided with
other sensors, considering as well that a false negative is not
necessarily consistent over time and multiple observations of
the same obstacle are processed before a collision may happen.

For both AlexNet and ResNet18, the AUC results together
with the accuracy boxplots show that there is a performance
boost with the federated learning approach in contrast to the
centralized learning method where all data is first aggregated
in a single training set.

In terms of sim-to-real performance of the two architectures,
we followed the steps in [5] and analyzed the performance
of both the centralized and federated learning approaches to
an independent real-world dataset. The results showing the



TABLE I: Area under ROC curve (AUC) values for the aggregated centralized learning and federated learning approaches.
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Fig. 4: Evaluation of sim-to-real capability of the trained models.

potential for vision-based obstacle avoidance inference for
both AlexNet and ResNet18 are shown in Fig. 4. The re-
sults indicate that both AlexNet and ResNet18-based obstacle
avoidance models implemented with the FL approach can
outperform the ones with the centralized data aggregation
method in terms of sim-to-real performance. Additionally,
AlexNet is more suitable for performing obstacle avoidance
tasks in our dataset.

B. Federated continual learning for visual-based obstacle
avoidance

In this section, we describe the results from experiments
where the Husky robot has been utilized both in a simulated
playpen (see Fig. 5a) and in a large-open indoor office
environment (see Fig. 5c) to operate autonomous navigation
tasks in their navigation maps (see Fig. 5b and in Fig. 5d,
respectively).

At the same time, while the Husky robot was operating
autonomous navigation tasks in the sim and real environments,
we collected images continuously for training local models for
FL models fusion. By validation on an independent dataset
R∗,v , we evaluated the global models fused with the local
model from simulated husky robot HS only, the local model
from real-world Husky robot HR only, and the local models of

(a) Sim: operating environment (b) Sim: navigation map

(c) Real: operating environment (d) Real: navigation map

Fig. 5: Husky Navigation Environment and Maps

both them HS,R. The results are shown in Fig. 6. Regarding
AlexNet, fusing the models either from simulation or real-
world can improve the accuracy of the vision-based obstacle
avoidance. However, for ResNet18, our results show that
fusing the local model from the simulator can improve the
performance of the global model more than fusing the one
from the real-world Husky. By fusing both of them, the
accuracy can be improved, which shows the potential benefit
of collaborative learning from both simulated and real robots.

V. DISCUSSION AND CONCLUSION

This work presents an FL-based lifelong learning method
for vision-based obstacle avoidance among various mobile
robots involving both simulated and real-world environments.
Rather than applying a single deep neural network, we ana-
lyzed the performance of the FL-based method compared with
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Fig. 6: Accuracy of FL fused models based on images collected while
Husky was operating navigation tasks in simulated and real-world
environments for continual learning purposes

the centralized data aggregation method with two different
deep neural networks, providing to better generalize results.
More specifically, we found that the FL approach can bring
competitive accuracy compared to centralized learning across
the simulated and real worlds while also delivering inher-
ent benefits in communication optimization and data privacy
preservation, enabling collaboration across organizations or
users. Additionally, we evaluated the FL method’s sim-to-real
vision-based obstacle avoidance performance. The result indi-
cates that transferring the obstacle knowledge from simulation
to reality using the FL method is more effective and stable.
Within the FL-based lifelong learning system, one agent can
improve its obstacle avoidance performance by aggregating
models from local models in other agents situated either in
simulated or real-world environments in our study.

In future work, we will concentrate on utilizing and adapting
the FL-based lifelong learning system to perform other robotic
navigation tasks with a view toward sim-to-real capabilities.
We also find potential in dynamically adjusting the simulation
environments based on real-world robot experiences, e.g.,
adding 3D models of new objects found.
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